

Home Search Collections Journals About Contact us My IOPscience

Operator content of the Ashkin-Teller quantum chain-superconformal and Zamolodchikov-

Fateev invariance: I. Free boundary conditions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 6635

(http://iopscience.iop.org/0305-4470/20/18/563)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 05:19

Please note that terms and conditions apply.

CORRIGENDUM

Operator content of the Ashkin-Teller quantum chain—superconformal and Zamolodchikov-Fateev invariance: I. Free boundary conditions

Baake M, von Gehlen G and Rittenberg V 1987 J. Phys. A: Math. Gen. 20 L479-85 In the formulae and tables of this letter the following corrections should be made.

In (1) the last term should be $\varepsilon \Gamma_j^2 \Gamma_{j+1}^2$. Equation (11) should be $L_n \to (-1)^n L_n$ $n \in \mathbb{Z}$. For the decomposition of $(\frac{1}{24})_1^R$ in (28), $k \in \mathbb{Z}$ should be a subscript to the symbol \oplus . The sector $D_{0,1}$ for h=6 in (29) should be $D_{0,1}=[1]_1 \oplus [\frac{2}{3}]_1$.

Operator content of the Ashkin-Teller quantum chain—superconformal and Zamolodchikov-Fateev invariance: II. Boundary conditions compatible with the torus Baake M, von Gehlen G and Rittenberg V 1987 J. Phys. A: Math. Gen. 20 L487-93 In the formulae and tables of this letter the following corrections should be made.

In table 2, for boundary condition Σ , the sector $\Sigma = -1$ should be \mathcal{H} instead of \mathcal{H} . In table 2, for boundary condition ΣC , the entries for the sectors $\Sigma^2 = -1$, $\Sigma C = 1$ and $\Sigma C = -1$ have to be interchanged.

The operator content of \oplus (h=6) in (14) contains the contribution $2((\frac{27}{32})^W, (\frac{75}{32})^W)$ only once instead of twice.